
DTIC(:-' .CTER
APR 05 198-

ETVERL1T 5

A Fast Algorithm for the
Evaluation of Legendre Expansions

B. Alpert and V. Rokhlin

Research Report YALEU/DCS/RR-671
January 1989

L DI tRtBUTI STATEMENT
Arproved for public release:

Disribution Unfimited

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

n 4-N 2.

) An algorithm is presented for the rapid calculation of the values and coefficients of finite
Legendre series. Given an n-term Legendre expansion, the algorithm produces its values at n
Chebyshev nodes on the interval [-1,1] for a cost proportional to n log n. Similarly, given the values
of a function f at n Chebyshev nodes, the algorithm produces the n-term Legendre expansion of the
polynomial of degree n - 1 that is equal to f at these nodes. The cost of the algorithm is roughly
3 times that of the fast Fourier transform of length n, provided that calculations are performed to
single precision accuracy. In double precision, the ratio is approximately 5.5.

The method employed admits far-reaching generalizations and is currently being applied to
several other problems.

DTICSELECT-
A~ U5 189)

A Fast Algorithm for the
Evaluation of Legendre Expansions

B. Alpert and V. Rokhlin

Research Report YALEU/DCS/RR-671
January 1989

The authors were supported in part by the Office of Naval Research under Grant N00014-86-
K-0310 and in part by IBM under grant P00038437.

Approved for public release: distribution is unlimited.

1 Introduction

Legendre polynomials are widely used in applied mathematics. Their applications include
quadratures, approximation theory, solution of partial differential equations, analysis of
pseudospectral methods, and several other areas. However, attempts to use Legendre
polynomials as a numerical tool (as opposed to an analytical apparatus) tend to meet
with a serious difficulty: given a function f : [-1, 11 --+ R tabulated at n nodes, it
takes order O(n 2) operations to obtain the Legendre expansion of f. Similarly, given an
n-term Legendre expansion, at takes order O(n 2) operations to evaluate that expansion
at n nodes in R. In other words, unlike the Chebyshev expansion or the Fourier series,
the Legendre series does not have a fast transform associated with it. Whenever possible,
therefore, the Legendre series is avoided in favor of an expansion for which a fast transform
exists. In some cases, this substitution causes relatively little difficulty (for example,
in the construction of pseudospectral algorithms for the solution of partial differential
equations). In other cases, it cannot be done at all (for example, in the solution of partial
differential equations by the separation of variables in the spherically symmetric geometry,
where the choice of Legendre polynomials as the set of basis functions is dictated by the
mathematics of the problem).

In Orszag [8], a method is proposed for the rapid evaluation of a fairly wide class of
eigenfunction transforms. The algorithm is based on the combination of certain analytical
considerations with the fast Fourier transform, has the asymptotic CPU time estimate
of order n(log n) 2/ log log n, and becomes faster than the direct (order n 2) algorithm at
n t 128 (in the case of the Legendre series).

In this paper, we present a procedure for the rapid evaluation of a Legendre expansion
at Chebyshev nodes on the interval [-1, 1], and conversely, for the evaluation of the
coefficients of a Legendre expansion from a table of its values at Chebyshev nodes. More
specifically, given a function f expressed as Legendre expansion of the form

n-1
A~t) E aj.- Pit), (1)

j=O

the algorithm evaluates f at the n Chebyshev nodes to, tl,..., t,,- 1 on the interval [-1, 1]
in order O(n log n) operations. Similarly, given the values of a function f : (-1, 11 R
tabulated at the nodes to, tI,... , tn- 1, the algorithm requires order O(n log n) operations
to evaluate the coefficients a 0 , C1 ,..., Cin- 1 such that

n-i

f(ti) = Eo !, • Pj(ti) fori= , 1,...,n-1. (2)
./=0

The algorithm we present is based on replacing the Legendre expansion of the form

(1) with a Chebyshev expansion of the same length, with subsequent evaluation of the_-

latter via the fast cosine transform (see, e.g., [3] Chap. 10). It turns out that the
reduction of a Legendre expansion to a Chebyshev expansion can be performed in order
O(n) operations, and it i. well known that the cosine transform of length n requires

A "I. i'idjor
1"""t S~e~iaDi

4. 1 7e
VA

0V'

order O(n log n) operations. Thus, the resulting CPU time estimate of our algorithm is
O(n log n).

Remark 1. While the asymptotic CPU time estimate of our scheme is dominated by that
of the fast cosine transform it employs, in most practical situations (n < 20,000), the
conversion of the Legendre series of length n into a Chebyshev series tends to be roughly
twice as expensive as one fast Fourier transform of length n, provided the calculations
are performed in single precision arithmetic. As a result, evaluating the series of the
form (1) at n Chebyshev nodes by means of our algorithm is approximately three times
as expensive as a single FFT of length n. In double precision arithmetic, this ratio is
roughly 5.5 (see Section 6 below).

In the following section, we summarize several well-known facts from approximation
theory to be used in the subsequent sections. In Section 3, the analytical properties of
the linear mappings connecting the coefficients of Legendre and Chebyshev expansions
are studied. Sections 4 and 5 contain the description of the algorithm and its complexity
analysis, and in Section 6 results of several numerical experiments are presented. Finally,
Section 7 discusses several straightforward generalizations of the algorithm of this paper.

The paper has two appendices. Appendix A presents details of an efficient scheme for
the evaluation of the function r(x + 1)/r(x + 1), required by our algorithm. In Appendix
B we sketch an alternative algorithm, also implemented, which is competitive with the
main algorithm presented.

Remark 2. The approach of this paper is closely related to that used in [9] to construct
an order O(n) scheme for the evaluation of a polynomial of order n at n arbitrary points
in R. Both algorithms can be viewed as particular implementations of a scheme for the
rapid application to arbitrary vectors of matrices whose entries are sufficiently smooth
functions of their indices. Such a general procedure is discussed in Section 7, and will be
reported in detail at a later date.

2 Mathematical and Numerical Preliminaries

2.1 Miscellaneous Facts from Approximation Theory

In this section we summarize several well-known facts, the first being the classical error
bound for Chebyshev approximations (see, e.g., [4]).

Lemma 1. Suppose k > 2, and let ti denote the i th Chebyshev node of order k on [0, 1]
and ui(t) the i th Lagrange polynomial associated with the ti's, i.e.,

11 +cof (i +)r))\i k-1i -t
t = 2)u,(t) = T , - (3)

2 2k j=O~J~it -s

for i = 0, 1,..., k- 1. Suppose further that f : [a, b] -+ R is a function with k continuous
derivatives, and that the error E(f, k, [a, b]; t) of the k-node Chebyshev expansion for f

2

at a point t E [a, b] is defined by the formula

k-1 t-a
E(f,k,[a,b];t) = f(t) - E u, . f(a + (b - a)ti). (4)

Then for any t E [a, b],

IE(f,k,[a,b];t) < 2(b-ak sup If(v)I. (5)- 4kk ! ,E[.,b]

Throughout the paper we will retain the notation of t1 for Chebyshev nodes, ui(t) for the
corresponding Lagrange polynomials, and E(f, k, [a, b]; t) for the interpolation error.

Next we provide a bound on the derivatives of an analytic function, which follows
directly from the Cauchy integral formula.

Lemma 2. Suppose that D C C is a closed disk of radius r centered at z E C, and that
f : D - C is a function continuous on D and analytic on its interior D\aD. Then

If(k)(z)lI < k sup If(z + reiO)I. (6)
r OE[o,2w]

The next lemma provides an expression for the logarithm of the gamma function (see,
e.g., [71, p. 10) which we use in Lemma 4 below.

Lemma 3 (Binet). For any z E C such that Re(z) > 0,

in r(z) = (z - 1/2) ln(z) - z + ln(2ir)/2 + I(z), (7)

where

e(Z) 7 1 - +) dt (8)

Furthermore,

164

We define a function A : C --* C, by the formula

A(z) = r(z + 1/2) (10)
r(z + 1)

The function A will often appear in the remainder of the paper. The following lemma
states specific bounds on IA(z)I that we will need in Section 3.

Lemma 4. Suppose that z E C and Re(z) > 0. Then

< IA(z)I (11)tz + ii

and

IA(z)I (12)
Oz + ii

3

Proof. Combining Binet's expression for In r (Eq. 7) with the definition of A (Eq. 10),
we obtain In A(z) = F(z) + -(1 - ln(z + 1)) + Q(z), (13)

2
with the function F: C -- C defined by the formula

F(z) = zIn (+ 12) (14)

and the function Q: C -- C defined by the formula

Q(z) = I(z + 1/2) - I(z + 1), (15)

where I(z) is given by Eq. (8). Combining the estimate (9) for II(z) with Eq. (15), we
see that

IRe(Q(z)) < 1'
(16)

for any z with Re(z) > 0, and simple analytical manipulations show that
1-< Re(F(z)) < 0 (17)

for any z with Re(z) > 0. Now, combining Eq. (13) with estimates (16) and (17), we
obtain 1 1i -1 < Re(lnA(z)) + 1lnI + 11 _< 1,

2 - 2
from which (11) and (12) follow immediately. i

2.2 Definition of Legendre and Chebyshev Polynomials

An orthogonal family of polynomials WO, i, W2,.., is a set of polynomials of degrees
0, 1, 2,..., in which the inner product (Wi, Wj) is zero if i # j and positive if i = j. The
inner product is defined by the formula

(f g) = j f(t) g(t) w(t) dt,

where [a, b] C R and the weight function w is continuous and non-negative on [a, b].
The Legendre and Chebyshev polynomials each form an orthogonal family of poly-

nomials. In each case the inner-product integral is taken over the interval [-1, 1]; for
the Legendre polynomials, the weight function is w(t) = 1, while for the Chebyshev
polynomials, w(t) = 1/vF -t 2.

Any orthogonal polynomial family satisfies a three-term recurrence relation (for n > 0)
of the form

W_,(t) = 0, po(t) = Ao,

A, Fnit _ (tw, W) 1 _ (W.~,tc~. 1 p,,...1 (t) (18)(At I,) J (t)I (pn-i,Pn-l)

4

where A,, 0 is the leading coefficient of V,,(t) and can be chosen arbitrarily. For the
Legendre polynomials P0, P1, P 2,..., Eq. (18) takes the form

Po(t) = 1, Pl(t) = t,

P-+I(t) = n + 1 t t (t) n P.-(t), (n > 1). (19)

For the Chebyshev polynomials To, T1, T2 ,..., Eq. (18) becomes

To(t) = 1, Tl(t) = t,

T+ (t) = 2t T(t) - T.-_i(t), (n > 1).

In addition to the above recurrences which define P, and T (n = 0, 1, 2,...), equivalent
closed-form expressions are available. The Legendre polynomials can be given by the
equation

dnP,_tt2 _ 1)n,
P =2-! dtn(t - 1), (n > 0)

and the Chebyshev polynomials by the equation

T,(t) = cos(narccost), (n > 0).

Everything in this section can be found in standard texts (see, e.g., [4] Sec. 4.4).

2.3 Connection between Legendre and Chebyshev Expansions

We will denote by M', L" a pair of n x n-matrices defined by the formulae
'-A) 2) f0=ifO=i j<nandjiseven

A= j-) A (i') if0<i j<nandi+jiseven (20)

0 otherwise

1 if i = j =0
ifO0< i= j < n

2("= (21)(41i+l))A (-i 2) A ('+i') if 0 < i < j < n and i +j is even
0 otherwise,

with A defined by Eq. (10).

Remark 3. While Eqs. (20) and (21) define AI,'j and L. for integer values of ij, it is
apparent from Eq. (10) that Mn and Ln can be naturally viewed as functions on C x C,
and we define M, : C x C --+ C by the formulae

M(X, Y) 2 £A(Y x) A(Y (22)

-CX'Y -y(x + 1/2) _ __ (y-___2)A__ (3

S(Y + x + 1)(y -)2 2-(

5

Clearly, MAIn = M(ij) if 0 < i < j < n and i + j is even. Similarly, D'. = £(ij) if
0 < i < j < n and i + j is even. It easily follows from the well-known properties of the r-
function (see, e.g., [1]) that M, C are meromorphic functions of each of their arguments
with the poles of M located at the points y = ±x - 1, ±x - 3, ±x - 5,... and the poles
of C at the points y = x + 1,-x, x - 1,-x - 2,...

The matrices M", Ln are inverses of each other; their definition is motivated by the
following well-known fact (see, e.g., [5], §8.91-2):

Lemma 5. Suppose that the function f : [-1, 1] --* R has a finite Legendre expansion of
the form

n-1

f(cos 0) E '" Pi(cos 0). (24)
i=0

Then it also has a finite Chebyshev expansion of the form

n-1

f(cosO) = Z i -T,(cos 0), (25)
i_=o

where a = (o,... , a,,-1) and /3 = (b,... , ,,-) are related by the equation

/)3= M . (26)

Conversely, if f is a function given by Eq. (25), then it may be expressed in the form of
Eq. (24), where 6 is given by

01 = L"ng.(27)

3 Analytical Properties of the Mappings M, C

Definition 1. Suppose that a square S C R xR is defined by the formula S = [xo, xo+a] x
[yo, yo+a], where a > 0. We will say that S is separated from the diagonal if yo-xo : 2a.

The following theorem is the principal analytical tool of this paper. It states that on any
square separated from the diagonal, the entries of M" and L" are well approximated by
Chebyshev expansions of the functions M, C with respect to either the first or the second
coordinate. For any 1 E C we will define a pair of functions Mj and £4 by the formulae

mi(y) = M(xy)

4 _y =C(i'y)

for all y E C. Similarly, for any E C we will define the functions M and V by the
formulae

M(X)= M(x, 9)

'&x C(x, 01

for all x E C.

6

Theorem 1. Suppose the square S = [x0 , xo + a] x [yo, Yo + a], a > 2, is separated from
the diagonal and (x, y) E S. Then

IE(M, k, [xo, xo + a];) < 8e 3 (28)

and
!E(M,, k, [yo, yo + a]; Y)f -< 8e3 IM(x, Y)J. (29)

Similarly, im ,IE(Ck,[xoxo+a];x) 1128e3 C(x, y)
(30)

and JE(,k,yo,yo +a]; y)I :224e3 4(, y)
(31)3k+ < + ,

where E is the error for Chebyshev interpolation, as defined in Eq. (4).

Proof. We will prove here only the estimate (28), since the proofs of all four state-
ments (28), (29), (30), (31) are quite similar. In order to prove (28), we win prove two
inequalities

IE(AMY , k, [x0, x0 + a]; x)l 32e'/Tr (32)

3k/(y, - x + 2)(y + x + 2)

lM(Xy)- 4e-.x /7r ",=1 (33)V(y - x + 2)(y + x + 2)

for all (x, y) E S. and observe that estimate (28) is an immediate consequence of (32)
and (33).

a) Proof of inequality (32). In order to apply the error estimate (5) of Lemma 1 to the
function M', we will need a bound on the derivatives of My'. First, we establish a bound
on MY (x + 2(y - x)e'1) for any (x,,y) E S and 0 E [0,27r]. It immediately follows from
the definition of M (Eq. 22) combined with estimate (12) that

IM (x + 4 (y - + TeY
A 2 y -' x _(y)eje) 1.JA(+3(y -x)eie)I

2 2 8 2 8
< 2e(34)

-"[(, - x)/8 + 1] [(y + 7x)/8 + 1]

for any 8 E [0, 27r]. Combining estimate (34) with the Cauchy integral estimate (6) and
noting that y - a > a, we obtain

akM W k!) 16e 2/7r (35)
(<(3a/4 -a,(y x + 2)(x + y +2)

7

Now (32) follows from a combination of (35) with estimate (5).

b) Proof of inequality (33). The lower bound on M is easily established by combining
the definition of M (Eq. 22) with estimate (11), which yields

1Mx')1=2 A y ')1 I , -J 2e_
I2(x,y)l =2 1 r[(y -x)/2 + 1]. [(y + x)/2 + 1]'

for any (x, y) E S, and inequality (33) immediately follows. I

Remark 4. Estimates (28), (29), (30), and (31) in Theorem 1 are quite pessimistic.
Numerical experiments indicate that the errors in those estimates all decay approximately
as 5 -k, as opposed to 3

- k. In fact, 8-point Chebyshev expansions will approximate M
and C with roughly single precision accuracy (7 digits) on any square separated from
the diagonal. Similarly, double precision (16 digits) is achieved with 18-point expansions.
For our purposes, however, the estimates of Theorem 1 are adequate.

4 Informal Description of the Algorithm

We now define a concept closely analogous to the separation of a square from the diagonal.

Definition 2. Suppose A is an upper-triangular n x n-matrix with entries {Aij}, i,j =
0,1,..., n - 1. Suppose further that T is an m x m-submatrix of A defined by the formula

Tij = Ap+i,q+j

with p, q two non-negative integers. We will say that the submatriz T of matrix A is
separated from the diagonal if

q-p > 2m.

4.1 A Simple Example

Suppose that T is an m x m-submatrix of matrix M ' , and that T is separated from
the diagonal. We present a simple example of how the smoothness of M" enables us to
efficiently compute W- = TVf, where V = (v 0,..., v,,.) is an arbitrary vector of length m.
To compute

rn-1wi E M vt(io + i'jo + jD. vi for i = 0,..., m - 1, (36)

j=O

we may approximate M (io + i,jo + j) by its Chebyshev expansion in j. We have

M(io + i,jo + j) M M(io + i,jo + t'm) . UT , (37)
r=O

where we know from Theorem 1 that as k grows, the error of this approximation shrinks
as 3 - . Substituting (37) into Eq. (36) and changing the order of summation, we obtain

k-i rn-1 k-1

wi , M(io + i,jo + tm) E u .v = M /,(io + i,jo + trn)- br
r- 1=0 r=O

whereb,=E'-u,(j/m).vj (r=O,1,...,k-1).
The number of operations required to evaluate t6 in this manner is O(km). Indeed,

evaluating b0,..., bk- 1 requires order 0(km) operations (k coefficients at m operations
per coefficient). Evaluating the vector u- given the coefficients b..... , bk- 1 is also an order
0(km) procedure (evaluating a k-term expansion at m nodes). For a fixed precision C,
the number k of Chebyshev nodes required is log 3 1, and is independent of m. Thus the
cost of the evaluation of u- = TV- has been reduced from order O(m 2) to O(m log i).

This example represents only a part of the computation required to apply matrix
M' to an arbitrary vector, since the submatrix T is assumed to be separated from the
diagonal. The actual algorithm is constructed by extending the above example in order
to apply the entire matrix. The matrix M" can be divided into square submatrices, each
of which is separated from the diagonal (Figure 1). To apply the matrix M' to the vector

Figure 1: Each submatrix T in the subdivision of M ' is separated from the diagonal (see
Definition 2). Here the subdivision is shown to three levels.

i, each submatrix T is applied separately, as suggested in the example. The remaining
undivided portion of Mn near the diagonal is applied directly. Before we can introduce
the algorithm, however, we will need some additional notation.

9

4.2 Notation

The algorithm to be described will input an arbitrary vector a = (aO,... i,n- 1) and
compute an approximation ' = (-y, ... ,, f,-1) to the vector/ = Mn&. Theorem 1 will
be used to ensure the desired quality of approximation.

Suppose that s is a positive integer such that h = log2(n/s) - 1 is also a positive
integer. For any integer I E {1,... ,h} and j E {O,. . .,n/(2- 1 s) - 1}, we define the
interval Ij C R by the formula

Ij = .2- 1ls, (j + 1) -2''s].

For any integer I E {1,...,h}, I E {0,....,n/(2'-Is) - 3}, andj E {i+2, i+3} (for i
even), j = i + 2 (for i odd) we define the square jSj C R2 by the formula

Isij = I,, X I,1.

The definition of the squares 1Sij is illustrated in Figure 2.

~~~~IS2,4 1S2,5 1.

I S,.sS,

Figure 2: The upper triangle of the square [0, n] x [0, n] is subdivided into squares, each
of which is separated from the diagonal (Definition 1). Here the number h of levels is
equal to 2.

For 1 E {1,...,h}, m E {O,...,2-s - 1}, and r E {O,...,k - 1}, we define the
Chebyshev interpolation coefficient ur m by the formula

U,.M = Ur , (38)

10



where u, is given by Eq. (3). For each interval Iij and r E {0,... , k - 1} we define the
coefficient br, by the formula

bru ur,m .am+j. 21-1, (39)
m=O

and observe that the definition of b', j is analogous to the definition of br in the example
above. For each square tSij we define a k x k-matrix 1Mij of which each element I.71,
(r, m E {0,... , k - 1}) is given by the formula

M = M((i + t,). 2-1s, (j + tin) .2-'.5). (40)

We further define, for each square 'Sij and r E {0,..., k - 1}, the coefficient Lc!,J by the
formula

k-i

lcij E iM ij nr b.

inO

For each interval Ij and r E {,..., k - 1}, we define the coefficient cr" by the formulae

cr,2J = rc J,2J+2 + gc 21'2 3  (j < n/(2s) - 2)
C2jli2j+1,2j+3 (41)

c,= cr,/( 2 -1o)_. = 0

For each interval 11j and m E 0,..., 2l-s-1} we define the coefficient a7," by the formula

k-i

am= I .4, r.-- Ur, m " C11,.

Finally, for i E {0,... ,n - 1}, we define -i by the formula

"m}i + Min,
"-at~ + M c, ,, (42)
=1 "

where jl,i = Li/(2'-'s)J and mt,i = imod(21-1 s).
The notation introduced so far allows us to extend the example of Section 4.1 to apply

the entire matrix Mn to an arbitrary vector. The simplest algorithm, which is described
in the next section, requires order 0(n log n) operations. We have introduced, however,
one change from the example of Section 4.1: the values of M are interpolated with respect
to both the first and the second coordinates, rather than just the second coordinate. This
change allows us to construct an algorithm requiring order 0(n) operations. This latter
algorithm is described in Section 4.3, and will require some additional notation.

We note that for any integer I E {2,...,h}, m E {0,...,2''s-1}, and r E {0,...,k-
1}, the Chebyshev interpolation coefficient u,,, defined in Eq. (38) can be equivalently
given by the formula

k-i

I4,m = k- (43)
i=O

11



Remark 5. Eq. (43) is an instance of the more general formula

k-1

u7.(t) E U' () uj(2t) for any t E R, (44)

which immediately follows from the observation that the summation in Eq. (44) is the
(k - 1)st-degree interpolating polynomial which agrees with the function u, at points
to/2, t1 /2,. .. , tk-/2, and that u, itself is a polynomial of degree k - 1 (see Eq. 3).

Eq. (43) combined with Eq. (39) produces a recursive expression for br, given by the
formulae • -1

= ur (45)
i=O

Ur " -.1 ,2j + ur • ,2j+l (I E {2... I h). (46)

Following a similar procedure, for each Ij and r E {0,... , k - 1}, we recursively define
the coefficient dr by the formulae

k-1

dr + ~~=0U ). CIl (IEh47

1,2j+ + (2I4

i=O

where c',j is given by Eq. (41). Finally, combining Eqs. (45), (46), and (47), we see that
the vector -, defined by Eq. (42), can be equivalently given by the formula

k-i 2*-1

'Y~.=Zui (M) -d',+ Z: Ms,i~* s * aij for m = 0,..., IS-i (48)
i=f0 S if, j = 0,..., n/s - 1.

4.3 Description of an O(nlogn) Algorithm

A simple algorithm for the application of the matrix Mn to an arbitrary vector a =
(a,... , an-1) can be constructed by combining the procedure of Section 4.1 and the
subdivision of M n shown in Figures 1 and 2. The procedure of Section 4.1 works only
for a submatrix which is separated from the diagonal. The matrix M n can be divided,
however, into a collection of submatrices, each of which is separated from the diagonal,
plus an undivided part near the diagonal (see Figure 1). By applying the scheme of
Section 4.1 to each submatrix, we immediately obtain an order O(n log n) algorithm for
the application of the matrix M n (or L n ) to a.

12



4.4 Description of an O(n) Algorithm

Now we describe an order O(n) algorithm for the application of the matrix Mn (or matrix
L n) to an arbitrary vector. The matrix Mn is divided into submatrices, each of which
is separated from the diagonal. The scheme of such a subdivision is shown in Figure 1.
There are 3 squares of side length n/4, 3 3 of side length n/8, 3. 7 of side length n/16,
and so forth down to 3. ( 2h - 1) squares of side length s - n/21+h. The size s x s of
the smallest squares in the subdivision is fixed, independent of n. For each square the
separation condition of Theorem 1 holds.

The most direct application of Chebyshev expansions, to each square independently,
leads to an order O(n log n) algorithm. This operation count is due to order O(n) oper-
ations for all squares of one size, multiplied by O(log n) different sizes. The undivided
part of the matrix near the diagonal is handled directly in order O(n) operations.

We improve on this simple method by using in each square the Chebyshev expansion
for Mn in both row and column directions. We then "gather" coefficients used in each
row interval up from those for the next smaller intervals, compute k x k matrix-vector
products, then "spread" the results down to the next smaller column intervals. To de-
scribe this procedure, we employ the notation introduced in Section 4.2. The coefficients
brid are computed from level 1 to level h according to Eqs. (45) and (46). Then the
matrix-vector products 1cr,1 are computed and summarized to the values Cr, (Eq. 41).
These values are used to compute the coefficients d from level h to level 1, as specified
in Eq. (47). Finally, the vector -f is computed according to Eq. (48).

This incremental computation of the coefficients b "3 and the coefficients jj leads to
the reduction in complexity from order O(n log n) to O(n) operations. Now instead of
order O(n) operations for all squares of one size, we expend order O(n) operations for
all squares of the smallest size, half as many for the next larger size, one fourth as many
for the second larger size, and so forth. The sum of these operation counts remains order
O(n).

We divide the computation into an initialization phase, which is independent of c- =
(a, ... , a-1), depending only on n, and an evaluation phase, which does the rest of the
work. This partitioning of the algorithm leads to substantial savings when one computes
many Legendre transformations of the same size.

In the initialization phase, the values of for each square, as defined in Eq. (40),
are computed and stored; the near-diagonal values of M, appearing in Eq. (48), are
also computed. Details of an efficient scheme for the evaluation of M are contained in
Appendix A. The values of u, appearing in Eqs. (45) and (46) are also computed during
the initialization phase, and later used in the evaluation phase. The evaluation phase
consists of using the stored values of M and U, in computing, in succession, b" , cj, dr,,
and 71, as described above.

13



5 Detailed Description and Complexity Analysis of
the Algorithm

5.1 Description of the Algorithm

Initialization Phase
Comment [Input to this phase is the number of values n].
Set the number of Chebyshev nodes per interval k -, log(l/e),
where e is the desired precision. Set the smallest interval
size s ; 4k. (See Section 5.2, below.)

Step 1.
Comment [Construct Chebyshev nodes to, tl,..., tk- on the
interval [0, 1], Chebyshev nodes t',... , t'1 o t
and Chebyshev nodes tk,... , 2k- 1 on the interval [1, 1].]
do r- =0,...,k- 1

set t, = [1 - cos((r + .5)r/k)1/2
set t' = t'/2 and t'+,. = (1 + tr)/2

enddo

Step 2.
Comment [Evaluate the denominators in the expressions for the
Chebyshev interpolation coefficients u0 , U1..., uk-1

do r =0,...,k-1=e den, k-1
set den7  I=0,10(tr - t1)

enddo
Comment [Evaluate the Chebyshev interpolation coefficients
uO, U,.. . , Uk-1 at the uniformly spaced nodes 0,1 2,'", -i"]

do I = 0,... ,s-1r k-I( I _ t .

set z = Of0(l/s - 4)
do r = 0,...,k- 1

set ur(l/s) = [x/(l/s - t,)]/den,
enddo

enddo
Comment [Evaluate the Chebyshev interpolation coefficients
u 0, ul,. .. ,uk-1 at the Chebyshev nodes t ... , 2k-1
do I = 0,...,2k- 1

Set X = rk-l(t _ t)
dor=O,...,k-1

set u,(t') = [xl(t' - tr)]/den,
enddo

enddo

14



Step 3.
Comment [Evaluate the values 1M7 of the k x k
matrix on each square LSjj of the subdivision.]
h = log2(n/8) - 1
do l= l,...,h

do i = 0,...,n/(2'-1 s) - 3
doj = i+2,...,i+3-imod2

dor =0,...,k-1
do m =0,...,k-1

Calculate iM:7 according to Eq. (40).
enddo

enddo
enddo

enddo
enddo

Step 4.
Comment [Evaluate M in the undivided part of the matrix,
near the diagonal.]
do j = 0,...,n/s- 1

do m = 0,...,s- 1
set p = 2s - 2 + m mod 2
do i = mm +2,m+4,...,p

Calculate M(m + js, i + js) using Eq. (22).
enddo

enddo
enddo
End of Initialization Phase

Evaluation Phase
Comment [Input to this phase is = (aO,.. a-)

Step 5.
Comment [Evaluate the coefficients br,1 from the input
vector (aO,... , an-1) and the interpolation coefficients u,.(i/s).]
do j = O,...,n/s - 1

do r=0,...,k-1
set br, = Ei=o u.(i/s) -ai+.

enddo
enddo

15



Step 6.
Comment [Evaluate the coefficients b',j for I > 2, which
correspond to larger interval sizes, from the coefficients for
smaller interval sizes and the interpolation coefficients ur(t9).]
do l = 2,...,h

do j = O,...,n/(21-1 s) - 1

do r =O,...,k-1

set bE, = -1 [u,(t). b 2 +

enddo
enddo

enddo

Step 7.
Comment [Evaluate the coefficients cr" from the
values ,lM'7 and the coefficients b 1,j.]
do I h1,...

do j = 0,..., n/(2's) - 2

do r = O,...,k- 1
set 2, £ IJw;,2 + 2  1 bl,2j+2 2j,2j+ 3 ,2j+3

Cr E_ ' -1 M r,i
set i,2j+ = .0 2j+ 1 ,2j1 3 • *i,2j+3

enddo
enddo

enddo

Step 8.
Comment [Evaluate the coefficients d~, from the
coefficents c, and the interpolation coefficients ur(t).]
do l = h,h-1,...,1

do j = 0,...,n/(2t-1 s)- 2
do r =0,...,k-1

set ,2j = Cr, + E,-0 u,(t'), +
setdk-1 it rCI+I

set = cI',2j+ 1 + Eif +
enddo

enddo
enddo

16



Step 9.
Comment [Evaluate the final result - = (-yo..., y,-) from
the coefficients dj, the interpolation coefficients ur(m/s), the
values of M near the diagonal, and the input vector 5.]
do j = O,...,n/s - I

do m =O,...,s -1
set -m+, = ko u,(m/s)

set p = 2s - 2 + m mod 2
do i = m,m+2,m+4,...,p

set y,,+. = Ym+j. + M(m + js, i + is) aj+i.
enddo

enddo
enddo
End of Evaluation Phase
End of Algorithm

The algorithm for the opposite direction, namely, computing Legendre expansion
coefficients from Chebyshev expansion coefficients, is identical to the algorithm given
above, with C substituted for M.

Remark 6. In Theorem 1, error bounds for Chebyshev expansions in a square separated
from the diagonal are given for C(x, y)/(x + 1), rather than for £(x, y). In principle, then,
the algorithm for computing Legendre coefficients from Chebyshev coefficients should
apply the matrix corresponding to C(x, y)/(x + 1) using the method given above and
then apply the diagonal matrix corresponding to x + . Doing so would produce an
algorithm of the same asymptotic time complexity as that for M, but slightly more
expensive. In practice, this alteration produces virtually no improvement in accuracy, so
our implementation uses the same algorithm in both directions.

5.2 Complexity Analysis

In the following table, we provide the operation count for each step of the algorithm.

17



Initialization Phase
Step Complexity Explanation

1. O(k) Chebyshev nodes to,.. tk-1 and t.,.-, 2k-i

(a total of 3k nodes) are computed.

2. O(k 2 + ks) Interpolation coefficients u(l/s), for I = 0, 1,..., s - 1
and u,(t'), for I = 0,..., 2k - 1 are computed
(r = 0,... , k - 1). The average cost per coefficient
is constant.

3. O(nk2/s) Matrix entries lM7' are computed.
There are k 2 of these values per square; there are
'(n/s - 2) squares of the smallest size, 2(n/(2s) - 2)
squares of the next size, and so forth, up to 3 squares
of the largest size. Thus the total number of squares
is order O(n/s), at a cost of order O(k2 ) per square.

4. 0(ns) Matrix entries M(m + js, i + js) are computed.
There are no more than 2s of these values per row
of the matrix M1, and Mn has n rows.

Total 0(n(s + k 2 /s))
Evaluation Phase

Step Complexity Explanation
5. 0(nk) Coefficients brj, for j = 0, 1,..., n/s - 1 and

r = 0,..., k - 1 are computed, at order O(s)
operations each.

6. 0(nk2 /s) Coefficients br, for I > 1 are computed.
There are (n/s - 4) -k of these, and each requires
O(k) operations to compute.

7. O(nk2 /s) Coefficients cr,- are computed. There are
2[n/s - log2(n/s) - 1] . k of these, and each is
computed in order O(k) operations.

8. O(nk2/s) Coefficients d',j are computed. Again there
are 2[n/s - log2(n/s) - 11• k c." these, and each
is computed in order O(k) operations.

9. O(nk + ns) Final results -y, are computed. There are n of
these and each requires order O(k + s) operations
to compute.

Total 0(n(s + k + k 2 /s))

18



The total computation time for the initialization phase is

tiat = a, • k + a 2 • k2 + a3 . ks + a4 • nk 2/s + a5 • ns

and the time for the evaluation phase is

tevflj = a6 . ns + a7 . nk + as . nk 2 /s,

where a,, a2 ,... , as depend on the implementation, language, and computer system. The
length s of the smallest interval, however, is not determined by the problem, and can be
chosen arbitrarily. Choosing s to minimize the evaluation time te,a yields

s = kja/'Z6

For this choice of a, the initialization time twt and evaluation time t..a each are order
O(nk). The actual values of k and a used in our implementation are given in the next
section, which also includes running times and accuracies.

C Numerical Results

We have implemented the O(n) algorithm described above. It has been combined with
a cosine transform (order n log n) to produce a code converting coefficients of Legendre
expansions (of functions in the interval (-1,11) into values of such functions at Chebyshev
nodes, and vice versa. In the forward direction, the algorithm transforms function values
at Chebyshev nodes to Legendre expansion coefficients, while in the backward direction,
Legendre expansion coefficients are converted to function values at Chebyshev nodes.
Here we present the results of applying the algorithm to inputs of varying size, giving
accuracies and running times. These results are compared to a direct calculation.

The algorithm has been implemented both in single precision and double precision
arithmetic. The number k of Chebyshev nodes per interval was chosen to retain maximum
precision. The size s of the smallest interval was chosen to maximize efficiency. For the
single precision version, we chose k to be 8 and s to be 32. For double precision, k is 18
and s is 64.

We ran our FORTRAN implementations on a Sun 3/50 equipped with an MC68881
floating-point coprocessor. For comparison, times required to compute a complex FFT
on this hardware are also given. All accuracies were determined by comparing to results
computed in quadruple precision (on a microVax), using the direct method. The measure
of error was chosen to be the L2-norm:

n-1 n-1

E= Z(7, - i) 2/ ,,
'=0 i=O

where I5 is the result of the computation being tested and X is the result of the quadruple
precision computation. Input for the computations in the backward direction (converting

19



from Legendre coefficients to function values) was a vector whose components were inde-
pendent pseudo-random numbers, each drawn from a distribution uniformly distributed
in the interval [0, 1]. Input for the forward direction was the function values from the
backward quadruple precision computation.

Table 1
Single Precision Computations

Input Error Time (sec)
Size Algorithm Direct Algorithm Direct
(n) Forward Backward Method Initial. Eval. Method FFT

64 0.335e-06 0.133e-06 0.112e-05 0.92 0.07 0.30 0.02
128 0.629e-06 0.107e-06 0.290e-05 2.34 0.17 1.16 0.06
256 0.888e-06 0.117e-06 0.762e-04 5.48 0.47 4.78 0.16
512 0.130e-05 0.167e-06 0.242e-03 11.60 1.07 18.26 0.32

1024 0.236e-05 0.125e-06 0.278e-03 24.24 2.31 73.96 0.72
2048 0.285e-05 0.171e-06 0.396e-02 48.76 4.90 297.56 1.66
4096 0.503e-05 0.262e-06 0.121e-01 100.18 9.84 1168.18 3.48

The direct computation of E ai • Pi(t) was accomplished by applying the three-term
recurrence relation for Legendre polynomials (Eq. 19). This procedure produces sig-
nificant round-off errors for t near -1 and 1, which impairs the accuracy of the direct
computation. It is given here primarily for CPU time comparisons.

Table 2
Double Precision Computations

Input Error Time (sec)
Size Algorithm Direct Algorithm Direct
(n) Forward Backward Method Initial. Eval. Method FFT

64 0.152e-14 0.673e-15 0.756e-15 1.86 0.11 0.30 0.02
128 0.201e-14 0.695e-15 0.209e-14 4.56 0.28 1.18 0.08
256 0.312e-14 0.723e-15 0.134e-13 10.80 0.71 4.80 0.16
512 0.495e-14 0.725e-15 0.127e-12 24.32 1.96 19.22 0.36

1024 0.689e-14 0.768e-15 0.455e-12 52.30 4.62 76.92 0.78
2048 0.908e-14 0.787e-15 0.827e-12 108.50 10.12 307.40 1.76
4096 0.139e-13 0.840e-15 0.716e-11 223.00 21.38 1229.28 3.70

Several observations may be made from Tables 1 and 2.

1. The algorithm permits very high accuracy. In single precision the relative error is
less than 6 x 106 for all input sizes up to 4096. For double precision, the relative
error is less than 2 x 10-14.

2. The error of the algorithm increases roughly as the square root of the length of the
input vector.

20



3. The time required to make the single precision computation is less than 3 times
that for an FFT of the same size. For double precision, the ratio is about 5.5 for
n in the range we have tabulated. (For larger n, the ratio would be less than 5.5.)
The initialization time is roughly 10 times the computation time, for both single
and double precision.

4. In single precision computations, for n as low as 64, the time required by the
algorithm is less than one-fourth of the time required by the direct method. For
n = 4096, the speedup is 120-fold. For double precision, the speedups are roughly
3-fold at n = 64 and 60-fold at n = 4096.

7 Generalizations and Conclusions

An algorithm has been presented for the rapid conversion of the coefficients of a Legendre
expansion of a function on the interval [-1, 1] into its values at the Chebyshev nodes
on that interval, and vice versa. The algorithm requires order O(n log n) operations to
transform an n-term expansion into n function values, or n function values into an n-term
expansion.

The method admits several straightforward generalizations.

1. As described in Section 4.4, the scheme requires that n (the number of Chebyshev
nodes on the interval [-1, 1], and also the length of the Legendre expansion) be a
power of 2. Clearly, this is not an essential requirement. A simple modification of
the scheme will convert an n-term Chebyshev expansion into an n-term Legendre
expansion, and vice-versa, for any positive integer n. On the other hand, the fast
Fourier transform used to evaluate the Chebyshev series at the Chebyshev nodes
does impose certain algebraic requirements on n. Thus, the scheme of this paper
will perform efficiently whenever the FFT does.

2. Clearly, the problem solved by the algorithm of this paper is a particular case of the
following problem, regularly encountered in the numerical treatment of equations
of mathematical physics.

Problem 1. Given the coefficients anm for n = 0, 1,... , N - 1, and m = -n, -n +
1,..., n, evaluate the expression

N-1 n

f(, )=- E anm Pn(cos).e'm , (49)
n.=O m=-t

at the points (8,, pj), for i,j = 0, 1,... , N - 1, defined by the formulae

2i +1 j21r.

(In Eq. (49), Pn denotes the associated Legendre function of degree n and order

m, as defined in, e.g., [1].)

21



The algorithm of this paper admits a generalization that solves Problem 1 in order
O(N 2 log N)) operations, and the paper describing such a scheme is in preparation.

3. The heart of this paper is an order O(n) algorithm converting an n-term Legendre L

expansion of a function into an n-term Chebyshev expansion of that function, and
vice-versa. The algorithm is based on the fact that elements of the matrices M ' ,
Ln connecting the two expansions are a smooth function of the indices, except near
the diagonal. In this respect, the scheme of this paper is somewhat similar to those
of [9], [61, and several others. A radical generalization of this approach is to observe
that any matrix whose elements are a sufficiently smooth non-oscillatory function of
their indices can be applied to an arbitrary vector for a cost proportional to n (with
a fixed precision). As the matrix becomes less smooth, the procedure becomes less
efficient. For matrices singular near the diagonal (such as the matrices Mn , Ln of

this paper), the scheme is still of order O(n). The same is true for matrices with
singularities along a fixed number of bands of fixed width. It is easy to construct
examples of matrices for which the method will be of order O(n log n), and other
examples for which the method will fail completely. An investigation of these issues
is in progress, and the authors are aware of at least one other such algorithm [2].
This latter scheme, however, is based on a somewhat different set of techniques.

22



Appendices

A Numerical Evaluation of the Function A

The definitions of the functions M, C (Eqs. 22 and 23) involve the function A, defined
as

A(z) = r(z + 1/2)
r(z + 1)

for z E C. The algorithm, described in Sections 4 and 5, actually requires computation of
A(x) for x E R+ . The function A may of course be computed using the Sterling asymptotic
expansion for r, but for an efficient computation we use the asymptotic formula

1
A(x) - 1 as x - oo. (50)

For large values of x, therefore, the function A(z),fx may be well approximated by a
polynomial in 1/z. Defining the change of variable y = lx, we obtain the approximate
formula

A(~ 5A( ;z:,ao + aly+ + asy ,

where the coefficients ao, al,... ,as have been determined by evaluating the function
A(1/y)/,v- at Chebyshev nodes on each of four intervals. The values of the coefficients
are shown in Table A. 1.

Table A.1
Coefficients a0 , a,,... , as in the formula

A (1) ;t; v/[ao + ay +... + asys], for four separate intervals
Coefficient y E (0,.02) y E (.02,.04)

ao 0.99999999999999999d + 00 0.99999999999974725d + 00
al -0. 12499999999996888d + 00 -0. 12499999994706490d + 00
a2  0.78124999819509772d - 02 0.78124954632722315d - 02
a 3  0.48828163023526451d - 02 0.48830152125039076d - 02
a4  -0.64122689844951054d- 03 -0.64579205161159155d- 03
a5  -0.15070098356496836d - 02 -0.14628616278637035d - 02

Coefficient y E (.04, .058) y E (.058, .067)
a0 0.99999999999298844d + 00 0.99999999996378690d + 00
a, -0.12499999914033463d + 00 -0.12499999657282661d + 00
a2  0.78124565447111342d - 02 0.78123659464717666d - 02
a3  0.48839648427432678d - 02 0.48855685911602214d - 02
a4  -0.65752249058053233d - 03 -0.67176366234107532d - 03
a5  -0.14041419931494052d - 02 -0.13533949520771154d - 02

23



For small values of x, formula (50) is no longer useful. Fortunately, however, the
evaluation of A at small values of x, which corresponds to the evaluation of M and £
near the diagonal, is necessary only at half-integer values of x. In particular, it suffices to
obtain A at values x = 0,.5,1.0,1.5,..., (s - 3)/2 and x E [s/2 - 1, oo), where s is the size
of the smallest interval, as defined in Section 4.2. For our implementation, s > 32 (see
Section 6). Table A.1 shows the coefficients from the division of the interval (0, 1/15) for
y into four subintervals. The subintervals were chosen so as to limit the approximation's
relative error to 2 x 10-11. The coefficient values were computed using quadruple precision
arithmetic.

Table A.2 contains the tabulation of A at the half-integer values up to 14.5.

Table A.2
Values of A(x) for Small x

x A(x) x A(x)
0 0.17724538509055159d+ 01 0.5 0.11283791670955126d+ 01
1 0.88622692545275794d + 00 1.5 0.75225277806367508d + 00
2 0.66467019408956851d + 00 2.5 0.60180222245094006d + 00
3 0.55389182840797380d + 00 3.5 0.51583047638652002d + 00
4 0.48465534985697706d + 00 4.5 0.45851597901023999d + 00
5 0.43618981487127934d+ 00 5.5 0.41683270819112728d+ 00
6 0.39984066363200604d+ 00 6.5 0.38476865371488672d+ 00
7 0.37128061622971992d+ 00 7.5 0.35911741013389425d+ 00
8 0.34807557771536241d + 00 8.5 0.33799285659660638d + 00
9 0.32873804562006448d + 00 9.5 0.32020375888099550d + 00
10 0.31230114333906123d-+ 00 10.5 0.30495596083904336d + 00
11 0.29810563682364938d + 00 11.5 0.29169700601995452d + 00
12 0.28568456862266400d + 00 12.5 0.28002912577915634d + 00
13 0.27469670059871537d + 00 13.5 0.26965767667622464d + 00
14 0.26488610414876124d + 00 14.5 0.26035913610118244d + 00

24



B An Alternative Approach

In this appendix we will briefly describe an alternative approach to convert between
* Legendre and Chebyshev expansions. The algorithm we described above is designed to

cope with the singularities in M, f where the two arguments are nearly equal. The
definitions of M, C (Eqs. 23 and 22) reveal that each is roughly the product of two
lambda's, one a function of the sum of the arguments, another of the difference. The
singular behavior near the diagonal is due to the function of the difference. Our second
algorithm is based on "factoring out" this component.

We denote by Tn, S' the pair of n x n-matrices defined by the formulae
A(j-i) ifO<i<j<n(

0 otherwise

Sin -A(j-i-1) if0<i<j<n (52)
- 0 otherwise,

with A defined by Eq. (10). We note that the entries along a forward diagonal of Tn or
Sn are all equal, and it is not difficult to show that the matrices Tn and S'n are inverses
of each other. We may therefore write

Mn = T"(SnMn)

Ln= Sfl(TnLn),

where the matrix products in parentheses are both extremely smooth everywhere. We
will not prove this assertion here; we will instead describe how this fact may be used to
create our alternative algorithm.

The task of applying the transformation M n is reduced to applying R n = SnMnh then
applying Tn to the result. The latter task may be accomplished by use of the fast Fourier
transform for the application of Tn. Thus our task is reduced to applying Rn. The key
to applying Rn is that an entire column of the matrix, excluding the diagonal element,
may be well-approximated by a polynomial of small degree. In fact, the degree does not
depend on the column number. This observation leads to a very simple algorithm.

We introduce the notation rjj to denote the Ith polynomial coefficient for column j,

k
R az E rj i t  for j=12,... and i = 0, ... ,j - 1. (53)

1=0

Here we use k to denote the degree of the polynomial sufficient to maintain a given level
of precision (k = 5 gives single precision and k = 17 gives double precision). Given the
matrix size n, we define

n-I

q=, E rjcj fori 1,...,n - 1 and l= 0,...,k. (54)

25



We want to compute = R'a, where a = (ao,..., a,-,). Since R' = S'M ' is upper-
triangular, -y (i = 0,...,n - 1) satisfies the formula

n-1= (55)
-ti

Combining Eq. (55) with (53), changing the order of summation, and using the expression
for qj,j in Eq. (54), yields

13 =ij = j (56)
j~i 10 1=0(j~i1=0

It should now be clear that all qjj (I = 0,..., k and i = 0,..., n - 1) can be computed
from the rij in order 0(nk) operations and then ' = (70, ... , 7,n-i) in an additional 0(nk)
operations. The degree of the polynomials, k, depends only on the precision required;
with the precision specified, the total time complexity needed to apply Rn is order O(n).

The algorithm may be used, without modification, for the application of the matrix
Q = TnLn to an arbitrary vector of length n.

An issue arises in computing the polynomial coefficients rj. This computation is
complicated by the form of the definition of Rn. Each matrix element is expressed as a
sum:

in

Whereas each term in the sum may be computed efficiently, the sum itself may contain
order O(n) terms. On the face of it, the computation of the elements of Rn, and therefore
the polynomial coefficients rej, is prohibitively time-consuming. We solve this problem by
computing instead a corresponding integral, using Gauss quadrature, then determining
the sum by using the Euler-Maclaurin summation formula. This method produces an
O(log n) algorithm for computing each coefficient rlj. We omit further details of this
algorithm.

26



References

[1] M. Abramowitz and I. E. Stegun, editors. Handbook of Mathematical Functions.
Applied Mathematics Series, No. 55. National Bureau of Standards, 1972.

[21 G. Beylkin and R. Coifrnan. Personal communication.

[3] E. 0. Brigham. The Fast Fourier Transform. Prentice Hall, Inc., Englewood Cliffs,
N.J., 1974.

[41 G. Dahlquist and A. Bj6rck. Numerical Methods. Prentice Hall, Inc., Englewood
Cliffs, N.J., 1974.

[5] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Aca-
demic Press, Inc., 1980.

[61 L. Greengard and V. Rokhlin. "A Fast Algorithm for Particle Simulations," Journal
of Computational Physics. Vol. 73, No. 2, Academic Press, Inc., December, 1987.

[7] N. N. Lebedev. Special Functions and Their Applications. Dover Publications, Inc.,
New York, 1972.

[8] S. A. Orszag. "Fast Eigenfunction Transforms," Science and Computers, Advances
in Mathematics Supplementary Studies. G. C. Rota, editor. Vol. 10, pp. 23-30,
Academic Press, Inc., 1986.

[9] V. Rokhlin. "A Fast Algorithm for the Discrete Laplace Transformation," Journal
of Complexity 4, pp. 12-32, Academic Press, Inc., 1988.

27


